# N -Oxides and Related Compounds. Part XLI. ${ }^{1}$ Substituent-Ring Interactions in Methyl- and Chloro-pyrazines and -pyrazine 1-Oxides 

By R. P. Duke, Richard A. Y. Jones,* and A. R. Katritzky,* School of Chemical Sciences, University of East Anglia, Norwich NOR 88C<br>J. M. Lagowski,* Department of Zoology, University of Texas at Austin, Austin, Texas, U.S.A.<br>Yu. Sheinker, Institute of Pharmaceutical Chemistry, Ministry of Health, Moscow, U.S.S.R.

Electric dipole moments show that electronic interactions are greater in methyl- and chloro-pyrazines than in analogous benzene and pyridine compounds.

Study of the dipole moments of pyridines ${ }^{2-4}$ and of their $N$-oxides ${ }^{2}$ and complexes ${ }^{5}$ has elucidated the electronic structure and the reactivity of these compounds. Only fragmentary work has appeared on the dipole moments of substituted diazines, although there is considerable interest in the dipole moments of more complex systems such as pteridines and purines ${ }^{6}$ which contain fused diazine rings and which require data on these latter ring systems for their interpretation. We have now determined the dipole moments of some mono- and di-substituted pyrazines [see (1)] and their $N$-oxides to supplement the previous work ${ }^{7,8}$ in this field.

## EXPERIMENTAL

Preparation and Purification of Materials.-AnalaR benzene was dried by refluxing over sodium and was fractionated under nitrogen immediately before use.

2-Methylpyrazine ${ }^{9}$ and 2,6-dimethylpyrazine ${ }^{9}$ were obtained from Aldrich Chemical Co.; 2,6-dichloropyrazine ${ }^{10-12}$ was purchased from Nutritional Biochemicals Corp. 2-Chloro- ${ }^{10,13}$ and 2,3-dichloro-pyrazine ${ }^{12,14}$ were kindly supplied by Dr. R. G. Shepherd of the Lederle Laboratories, Pearl River, New York. All these samples were recrystallised or redistilled and had m.p.s or b.p.s in agreement with literature values. The following compounds were prepared by methods described in the literature: pyrazine 1 -oxide, m.p. $103-104^{\circ}$ [lit., ${ }^{15} \mathrm{~m} . \mathrm{p}$. 113-114 $\left.{ }^{\circ}, 16{ }^{16} 104^{\circ}\right]$; 2,5-dimethylpyrazine 1-oxide, m.p. 104-106 [lit., ${ }^{15} 105-106^{\circ},{ }^{17} 105-108^{\circ}$ ]; 2,6-dimethylpyrazine 1-oxide, m.p. $54-55^{\circ}$ [lit., ${ }^{16} 55^{\circ}$; 3,5-dimethylpyrazine 1 -oxide, m.p. $125-127^{\circ}\left[\mathrm{lit}\right.$. , $\left.^{16} 108-110^{\circ}\right]$ (Found: C, $58.3 ; \mathrm{H}, 6.6 ; \mathrm{N}, 22.6$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 58.1$; H, 6.5; N, 22.6\%); 3,5-dichloropyrazine l-oxide, m.p.
${ }^{1}$ Part XL, H. Bauer, A. J. Boulton, W. Fedeli, A. R. Katritzky, A. Majid-Hamid, F. Mazza, and A. Vaciago, preceding paper.
${ }_{2}{ }_{2}$ A. R. Katritzky, E. W. Randall, and L. E. Sutton, J. Chem. Soc., 1957, 1769.
${ }^{3}$ C. W. N. Cumper, A. I. Vogel, and S. Walker, J. Chem. Soc., 1956, 3621.
${ }^{4}$ ' C. W. N. Cumper and A. I. Vogel, $J$. Chem. Soc., 1960, 4723.
${ }^{5}$ C. M. Bax, A. R. Katritzky, and L. E. Sutton, J. Chem. Soc., 1958, 1254.
${ }^{6}$ 'H. Weiler-Feilchenfeld and E. D. Bergmann, Israel J. Chem., 1968, 6, 823.
${ }^{7}$ H. Lumbroso and G. Palamidessi, Bull. Soc. chim. France, 1965, 3150.
${ }^{8}{ }^{\circ}$ H. Lumbroso and J. Barassin, Bull. Soc. chim. France, 1965, 3143.
${ }^{9}$ E. H. Rodd, 'Chemistry of Carbon Compounds,' Elsevier, New York, 1959, vol. IVB, p. 1318.
${ }^{10}$ B. Klein, N. E. Hetman, and M. E. O'Donnell, J. Org. Chem., 1963, $28,1682$.
${ }_{11}$ G., W. H. Cheeseman and E. S. G. Törzs, J. Chem. Soc., 1965, 6681.

119-120 [lit., ${ }^{18} 123-125^{\circ}$ ] (Found: C, 28.5; H, 1.1; $\mathrm{N}, 17 \cdot 0$. Calc. for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 29 \cdot 1 ; \mathrm{H}, 1 \cdot 2 ; \mathrm{N}$, $17 \cdot 0 \%)$.
3,5-Bis(dimethylamino)pyrazine 1-Oxide.-3,5-Dichloropyrazine 1 -oxide ( 5.0 g ) and $25 \%$ aqueous dimethylamine ( 75 ml ) were refluxed with stirring for 20 h . The product, which crystallised from the reaction mixture upon cooling, was recrystallised from water and, after drying at $90^{\circ}$ in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$, melted at $170-172^{\circ}$ (decomp.); $74.5 \%$ yield (Found: C, $53.1 ; \mathrm{H}, 8 \cdot 1 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ requires C , $52.7 ; \mathrm{H}, 7.7 \%)$; $\lambda_{\text {max. }}(\log \varepsilon) 234(4.32), 294(3.93)$, and $376(3.82)$ in $1 \mathrm{~N}-\mathrm{HCl}$.
Physical Measurements.-Dipole moments were calculated by the method of Halverstadt and Kumler ${ }^{19}$ from measurements of the dielectric constant ( $\varepsilon$ ) and the specific volume $(v)$ of the solvent (benzene) and four different solutions of each compound. The specific volumes were measured with a $5 \mathrm{~cm}^{3}$ pyknometer. Dielectric constants at $25^{\circ}$ were derived from measurements with a Wayne-Kerr B641 capacitance bridge, and a glass cell. ${ }^{20}$ The electronic polarisation was obtained by summation of bond electronic polarisabilities taken from tables of bond polarisabilities ${ }^{21}$ except for $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}_{\mathrm{Ar}}$ and $\mathrm{N}^{+}-\mathrm{O}^{-}$which are not included therein. $\quad \mathrm{C}_{\mathrm{Ar}}-\mathrm{N}_{\mathrm{Ar}}$ Is taken as $2 \cdot 50$, the mean of $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{N}$, which gives calculated ${ }_{\mathrm{E}} P$ values close to those measured by Cumper; ${ }^{3}$ further $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}$ is close to 0.5 $(\mathrm{C}-\mathrm{C}+\mathrm{C}=\mathrm{C})$. For $\mathrm{N}^{+-} \mathrm{O}^{-}$we have taken the value $5 \cdot 00$ which was estimated from the (fairly wide range of) differences between $R_{\mathrm{D}}$ for pyridines and their $N$-oxides. No allowance was made for atomic polarisation. As before, ${ }^{22}$ the dielectric constant and specific volume for benzene were taken as 2.2741 and 1.1446 respectively at $25^{\circ}$. The results are recorded in Tables $\mathbf{l}$ and 2.

## DISCUSSION

The mesomeric moment, $\mu_{m}$ (X.Het), for a substituent in a defined position of a heteroaromatic ring is a measure

$$
12 \text { U.S.P. 3,291,802/1966 (Chem. Abs., 1967, 66, 95,086g). }
$$

${ }^{13}$ B. Klein and P. E. Spoerri, J. Amer. Chem. Soc., 1951, 73, 2949.
${ }^{14}$ G. Palamidessi and M. Bonanomi, Farmaco, Ed. Sci., 1966, 21, 799.
${ }_{15}$ C. F. Koelsch and W. H. Gumprecht, J. Org. Chem., 1958, 23, 1603.
${ }_{16}$ B. Klein and J. Berkowitz, J. Amer. Chem. Soc., 1959, 81, 5160.
${ }_{17}$ G. T. Newbold and F. S. Spring, J. Chem. Soc., 1947, 1183.
18 G. Palamidessi, L. Bernardi, and A. Leone, Farmaco, Ed. Sci., 1966, 21, 805.
${ }_{19}$ I. F. Halverstadt and W. D. Kumler, J. Amer. Chem. Soc., 1942, 64, 2988.
${ }_{20}^{20}$ M. Snarey, Ph.D. Thesis, University of East Anglia, 1968.
${ }_{21}$ R. J. W. Le Fèvre and K. D. Steel, Chem. and Ind., 1961, 670.
${ }_{22}$ R. J. Bishop, L. E. Sutton, D. Dineen, R. A. Y. Jones, A. R. Katritzky, and R. J. Wyatt, J. Chem. Soc. (B), 1967, 493.

Table 1
Dielectric constants and specific volumes in benzene at $25^{\circ}$ *

| $10^{6} w$ | $10^{6}\left(v_{1}-v_{12}\right)$ | $10^{6}\left(\varepsilon_{12}-\varepsilon_{1}\right)$ |
| :---: | :---: | :---: |
| 2-Methylpyrazine |  |  |
| 5056 | 698 | 1966 |
| 8178 | 148 | 3218 |
| 10,911 | 676 | 4255 |
| 13,737 | 1005 | 5405 |
| 2-Chloropyrazine |  |  |
| 2985 | 1133 | 5754 |
| 3309 | 1654 | 6324 |
| 3416 | 1201 | 6664 |
| 7579 | 3027 | 14,877 |
| 2,6-Dimethylpyrazine |  |  |
| 4655 | 489 | 1136 |
| 5620 | 1029 | 1342 |
| 7663 | 1267 | 2191 |
| 10,088 | 905 | 3160 |
| 2,6-Dichloropyrazine |  |  |
| 5337 | 4986 | 6786 |
| 11,292 | 6003 | 9905 |
| 14,405 | 7546 | 14,108 |
| 16,745 | 9204 | 18,367 |
| 2,3-Dichloropyrazine |  |  |
| 796 | 291 | 1359 |
| 2504 | 973 | 6753 |
| 4162 | 1886 | 12,115 |
| 8483 | 4124 | 25,960 |
| Pyrazine 1-oxide |  |  |
| 1806 | 879 | 5750 |
| 1908 | 898 | 6048 |
| 3688 | 1625 | 11,771 |
| 4868 | 1943 | 15,869 |
| 2,5-Dimethylpyrazine 1 -oxide |  |  |
| 2252 | 568 | 6076 |
| 3367 | 936 | 9039 |
| 5164 | 1732 | 13,865 |
| 7665 | 2291 | 20,629 |
| 3,5-Dichloropyrazine 1-oxide |  |  |
| 2167 | 1433 | 937 |
| 3486 | 2985 | 1467 |
| 5381 | 3757 | 2264 |
| 6864 | 4340 | 2848 |
| 3,5-Dimethylpyrazine 1-oxide |  |  |
| 2033 | 793 | 9261 |
| 2825 | 907 | 12,271 |
| 3703 | 1478 | 16,086 |
| 4806 | 1894 | 20,941 |
| 3,5-Bis(dimethylamino)pyrazine 1-oxide |  |  |
| 718 | 613 | 9852 |
| 1515 | 685 | 21,257 |
| 2053 | 626 | 28,978 |
| 2597 | 582 | 36,720 |

* $w=$ Weight fraction. $\varepsilon_{1}$ and $\varepsilon_{12}$ are the dielectric constants for solvent and solution respectively and $v_{1}$ and $v_{12}$ are the corresponding specific volumes.
of the transfer of $\pi$-electrons between substituent and ring. It may be defined by equation (1), in which measured moments of the substituted heterocycle $\mu(\mathrm{X} . \mathrm{Het})$, the parent heterocycle $\mu$ (Het), and the substituted alkane $\mu$ (Alk.X), are summed vectorially on the RHS (see ref. 2). $\dagger$

$$
\begin{equation*}
\mu_{\mathrm{m}}(\mathrm{X} . \mathrm{Het})=\mu(\mathrm{X} . \mathrm{Het})-[\mu(\mathrm{Het})+\mu(\mathrm{Alk} . \mathrm{X})] \tag{1}
\end{equation*}
$$

Pyrazine itself is centrosymmetric and has zero moment. For pyrazine l-oxide, our results agree with those reported by Lumbroso and Palamidessi. ${ }^{7}$ As these authors point out, the value ( 1.68 D$)^{7}$ is smaller than the vectorial sum ( 2.23 D ) of the pyridine and pyridine 1 -oxide moments indicating that the electronic structure of the pyrazine 1 -oxide molecule includes an important contribution from canonical form (2).

(1)

(2)

(3)

(6)


(4)

(5)

(7)

Values for mesomeric moments of methyl- and chloropyridines (recalculated by the method described above from the data of Cumper et al. ${ }^{3,4}$ ) are compared with those for the corresponding benzenes and pyrazines in Table 3. For both series, the order of the mesomeric moments is 3 -pyridine $<$ benzene $<2$-pyridine $<$ pyrazine; which is the order expected, since the two nitrogen atoms in pyrazine provide a certain degree of mutual reinforcement. For derivation of values in Table 3, $\mu$ (Alk.Cl) was taken as 2.14 D , the moment of t -butyl chloride, ${ }^{24}$ and no corrections were made for induced dipole effects; $c f$. ref. 4.

(8)

(9)

(10)

(II)

(12)

(13)

(14)

The dipole moments, and the electronic interactions deduced from them for 2,6-disubstituted pyrazines and 3,5 -disubstituted pyrazine 1 -oxides are compared with the corresponding data for substituted benzenes and pyridines in Table 4. ${ }^{3,4}$ If the rings are assumed to be regular hexagons, then, since vector addition of two equal moments acting at $120^{\circ}$ to each other gives a

[^0]Table 2
Dipole moments of substituted pyrazines in benzene at $25^{\circ}{ }^{*}$

| Substituent (s) | $\mathrm{d} \varepsilon / \mathrm{d} w$ | $-\mathrm{d} v / \mathrm{d} w$ | ${ }_{T} P_{2 \infty}$ | ${ }_{E} P$ | $\mu$ (D) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-Methyl | $0.393 \pm 0.002$ | $0.06 \pm 0.03$ | $37 \cdot 4 \pm 0.8$ | 26.2 | $0.74 \pm 0.02$ |
| 2-Chloro | $1.97 \pm 0.02$ | $0 \cdot 40 \pm 0.04$ | $67.8 \pm 1.0$ | 26.4 | $1.42 \pm 0.02$ |
| 2,6-Dimethyl | $0.31 \pm 0.03$ | $0.11 \pm 0.04$ | $39.7 \pm 0.8$ | $30 \cdot 8$ | $0.66 \pm 0.03$ |
| 2,6-Dichloro | $1.0 \pm 0.1$ | $0.49 \pm 0.08$ | 57.1 $\pm 0 \cdot 4$ | $31 \cdot 1$ | $1.13 \pm 0.03$ |
| 2,3-Dichloro | $3 \cdot 12 \pm 0.08$ | $0.49 \pm 0.02$ | 116.4土 1.0 | $31 \cdot 1$ | $2.04 \pm 0.01$ |
| 1-Oxide | $3.25 \pm 0.03$ | $0.40 \pm 0.03$ | $80 \cdot 0 \pm 0 \cdot 1$ | $26 \cdot 7$ | 1.62 $\pm 0.01$ |
| 2,5-Dimethyl l-oxide | $2 \cdot 689 \pm 0.004$ | $0.31 \pm 0.02$ | $93.6 \pm 0.7$ | $35 \cdot 8$ | $1.68 \pm 0.01$ |
| 3,5-Dichloro l-oxide | $0.415 \pm 0.004$ | $0.65 \pm 0.07$ | 37.2 $\pm 3 \cdot 4$ | $36 \cdot 1$ | $0.23 \pm 0.17$ |
| 3,5-Dimethyl 1-oxide | $4.33 \pm 0.06$ | $0.39 \pm 0.03$ | $129.0 \pm 0 \cdot 3$ | 35.8 | $2 \cdot 14 \pm 0.01$ |
| 3,5-Bis(dimethylamino) l-oxide | 14.17 ${ }^{\text {土 }} 0.07$ | $0 \cdot 19 \pm 0.11$ | $537 \cdot 2 \pm 3 \cdot 7$ | 52.1 | $4.87 \pm 0.02$ |

* Errors in $\mathrm{d} \varepsilon / \mathrm{d} w$ and $\mathrm{d} v / \mathrm{d} w$ are quoted as $\pm 1$ standard deviation based on the least-squares plot. These errors are combined to give the quoted error in $\mu$. Hence, errors are strictly statistical and are not necessarily limits of reliability [see R. A. Y. Jones, A. R. Katritzky, P. G. Lehman, K. A. F. Record, and B. B. Shapiro, J. Chem. Soc. (B), 1971, 1302].

Table 3
Mesomeric moments $\Delta \mu(\mathrm{D})$, for monomethyl and monochloro-compounds

|  | (3) | (4) | (5) | (6) | (7) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Methyl series |  |  |  |  |  |
| $\mu(\mathrm{Het})$ | 0 | $2 \cdot 22^{\text {a }}$ | $2 \cdot 22^{\text {a }}$ | $2 \cdot 22{ }^{\text {a }}$ | 0 |
| $\mu$ (Het.Me) | $0 \cdot 43{ }^{\text {b }}$ | $1 \cdot 99{ }^{\text {a }}$ | $2 \cdot 41{ }^{\text {a }}$ | $2 \cdot 62{ }^{\text {a }}$ | $0 \cdot 74$ |
| $\Delta \mu$ | $+0.43$ | $+0 \cdot 60$ | +0.34 | $+0.40$ | $+0.74$ |
| Chloro-series |  |  |  |  |  |
| $\mu$ (Het) | 0 | $2 \cdot 22^{\text {a }}$ | $2 \cdot 22^{\text {a }}$ | $2 \cdot 22{ }^{\text {a }}$ | 0 |
| $\mu$ (Het.Cl) | $1.61{ }^{\text {c }}$ | $3 \cdot 24{ }^{\text {d }}$ | $2 \cdot 02{ }^{\text {d }}$ | $0 \cdot 82{ }^{\text {d }}$ | $1 \cdot 42$ |
| $\mu(\mathrm{Alk} . \mathrm{Cl})^{\text {e }}$ | $2 \cdot 14$ |
| $\Delta \mu$ | +0.53 | +0.64 | +0.41 | +0.74 | $+0.72$ |

${ }^{a}$ Recalculated from data in ref. 3. ${ }^{b}$ From ref. 23. ${ }^{\text {e }}$ From ref. 22. ${ }^{\text {a }}$ Recalculated from data in ref. 4. © From ref. 24; $c f$. ref. 23.
very close correspondence with the values for the monosubstituted analogues. Two meta chlorine atoms appear to increase mutually their interaction moments, especially when they are in the $\beta$-positions of the pyridine ring.

$$
\begin{equation*}
\Delta=\mu\left(\mathrm{X}_{\mathbf{2}} \mathrm{Het}\right)-[\mu(\mathrm{Het})+\mu(\mathrm{Alk} \cdot \mathrm{X})] \tag{2}
\end{equation*}
$$

The enhancement in the interaction moment observed for two meta chlorine atoms is more pronounced when the two chlorine atoms are ortho; the measured ${ }^{23}$ moment of 2.27 D for $o$-dichlorobenzene implies $\Delta \mu$ of 0.86 D per chlorine, and the measured moment of 2.04 D for 2,3 -dichloropyrazine implies $\Delta \mu$ of 0.93 D per chlorine.

Table 4
Interaction moments, $\Delta \mu(\mathrm{D})$, for dimethyl and dichloro-compounds, and differences ( $\Delta \Delta \mu$ ) between these and the mesomeric moments of mono-substituted compounds

|  | (8) | (9) | (10) | (11) | (12) | (13) | (14) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dimethyl series |  |  |  |  |  |  |  |
| $\mu$ (Het) | 0 | $2 \cdot 22{ }^{\text {a }}$ | $2 \cdot 22{ }^{\text {a }}$ | 0 | $1 \cdot 62$ |  |  |
| $\mu\left(\right.$ Het. $\mathrm{Me}_{2}$ ) | $0 \cdot 37{ }^{\text {b }}$ | $1 \cdot 68{ }^{\text {a }}$ | $2 \cdot 59{ }^{\text {a }}$ | $0 \cdot 66$ | $2 \cdot 14$ |  |  |
| $\Delta \mu$ | $+0.37$ | +0.54 | $+0.37$ | $+0.66$ | $+0.52$ |  |  |
| $\Delta \Delta \mu$ | $-0.06$ | $-0.06$ | $+0.03$ | $-0.08$ |  |  |  |
| Dichloro series |  |  |  |  |  |  |  |
| $\mu$ (Het) | 0 | $2 \cdot 22{ }^{\text {a }}$ | $2 \cdot 22{ }^{\text {a }}$ | 0 | $1 \cdot 62$ | 0 | 0 |
| $\mu\left(\right.$ Het. $\left.\mathrm{Cl}_{2}\right)$ | $1.54{ }^{c}$ | $3 \cdot 65{ }^{\text {d }}$ | $0.95{ }^{\text {d }}$ | $1 \cdot 13$ | $0 \cdot 23$ | $2 \cdot 27$ | $2 \cdot 04$ |
| $\mu(\mathrm{Alk} . \mathrm{Cl}){ }^{e}$ | $2 \cdot 14$ |
| $\Delta \mu$ | $+0.60$ | $+0.71$ | $+0.87$ | $+1.01$ | +0.75 (or 0.29 ) | $+0.86$ | $+0.93$ |
| $\Delta \Delta \mu$ | +0.07 | $+0.07$ | $+0.46$ | $+0.29$ |  | $+0.33$ | +0.21 |

${ }^{a}$ Recalculated from data in ref. 3. ${ }^{b}$ L. Tiganik, Z. physik. Chem., 1931, B, 13, 425. c. R. A. Y. Jones, A. R. Katritzky, P. G. Lehman, and B. B. Shapiro, J. Chem. Soc. (B), 1971, 1308. d Recalculated from data in ref. 4. From ref. 24; cf. ref. 23.
resultant the same as that of one component, the net chlorine $\sigma$-moment can again be estimated as $2 \cdot 14 \mathrm{D}$. The resulting 'interaction moments,' $\Delta$ [equation (2)], show, especially in the case of the methyl compounds, a
${ }^{23}$ A. L. McClellan, ' Tables of Experimental Dipole Moments,' Freeman, San Francisco, 1963.

This work was supported in part by U.S. Public Health Service (to J. M. L.).
[1/1943 Received, 22nd October, 1971]
${ }^{24}$ E. G. Claeys, G. P. van der Kelen, and Z. Eeckhaut, Bull. Soc. chim. Belges, 1961, 70, 462.


[^0]:    $\dagger$ It has been pointed out by a Referee that equation (1) as written appears to neglect inductive effects and $\mathrm{C}-\mathrm{H}$ bond moments. The full equation is:
    $\mu_{\text {Het.X }}-\mu_{\text {Het.H }}+\mu_{\text {Alk.H }}-\mu_{\text {Alk. }}=$ Het.X $($ mesomeric $) ~+~$
    (Het.X - Het.H) (inductive) - (Alk.X - Alk.H) (inductive)
    $\mu_{\mathrm{Alk} . \mathrm{H}}$ is zero and the difference between the last two terms is also approximately zero.

